In the ever-evolving field of respiratory research, precision-cut lung slices (PCLS) have emerged as a versatile and physiologically relevant ex vivo model system. Campden Instruments vibratomes are well published for routinely producing PCLS (see Reference section below).
In the ever-evolving field of respiratory research, precision-cut lung slices (PCLS) have emerged as a versatile and physiologically relevant ex vivo model system. Their ability to maintain the complex multicellular architecture and functionality of the lung makes them an invaluable tool for studying respiratory diseases, pharmacological responses, and toxicological effects. This article delves into the preparation, utility, and potential of PCLS, offering insights for researchers eager to incorporate this method into their studies.
PCLS are thin (typically 100-400 μm) cross-sections of lung tissue that preserve the native cellular composition and architecture of the lung. They provide a 3D environment in which cells interact in a manner that closely mimics in vivo conditions. These slices can be prepared from human or animal lungs, enabling researchers to study species-specific and human-relevant respiratory mechanisms.
Credit: John Stegmayr, Lund University
PCLS offer several advantages:
Our lab has two 7000smz-2 Vibrotomes used to generate precision-cut lung slices from both animal and human tissue as well as precision-cut slices from other organs. We are particular happy with the consistency in slice generation, flexibility and range of slice thickness, ease of use, and last but not least the customer support offered by Campden Instruments.
John Stegmayr, PhD, Lund University.
The preparation of high-quality PCLS requires meticulous technique and specialized equipment. Here’s a step-by-step guide:
Credit: Rachel Blomberg, University of Colorado | Anschutz
Campden Instruments vibratomes are widely recognized for their reliability and precision in PCLS preparation. These instruments feature advanced vibration mechanisms and customizable settings, such as amplitude and frequency, which allow for minimal tissue damage during slicing. Campden's vibratomes are designed with user-friendly interfaces and robust build quality, ensuring reproducibility and consistency across experiments.
Proper calibration of the vibratome and the use of a sharp blade are critical for producing high-quality slices that preserve the structural and cellular integrity of the lung tissue.
PCLS have been successfully employed in a wide range of respiratory research applications:
Despite their numerous advantages, PCLS are not without challenges:
Advances in PCLS technology, such as co-culturing with immune cells or incorporating organ-on-chip systems, are likely to enhance their utility further. Innovations in imaging and molecular analysis techniques will also enable deeper insights into lung biology at the cellular and subcellular levels.
By integrating PCLS into their experimental toolkit, researchers can bridge the gap between traditional cell culture and in vivo models, paving the way for more accurate and translational discoveries in respiratory science.
Model 7000smz-2
Our top of the range high precision, vibrating microtome, this is the finest tissue slicer in the world for preparations for visual patch clamping. Shown with optional Slice incubation chamber and temperature controller.
Model 5100mz-Plus
The 5100-Plus is perfect for those who need to keep slices viable for longer e.g. for electrophysiological field recordings. The user can calibrate the Z-axis deflection of the blade to 2 µm with the adjustable blade holder and "Opti-cal" Calibration device.
Model 5100mz
The 5100mz is a very competitively priced, high precision, vibrating microtome (vibrotome for short) which shares many features with the top of the range 7000smz series, such as the vibrating mechanism, the inner and outer tissue baths and the easy to use control system.
Acharya, A. P., Tang, Y., Bertero, T., Tai, Y.-Y., Harvey, L. D., Woodcock, C.-S. C., Sun, W., Pineda, R., Mitash, N., Königshoff, M., Little, S. R., & Chan, S. Y. (2021). Simultaneous Pharmacologic Inhibition of Yes‐Associated Protein 1 and Glutaminase 1 via Inhaled Poly (Lactic‐co‐Glycolic) Acid–Encapsulated Microparticles. Am Heart Assoc, 10(12), 19091. https://doi.org/10.1161/JAHA.120.019091
Blomberg, R., Sompel, K., Hauer, C., Peña, B., Driscoll, J., Hume, P. S., Merrick, D. T., Tennis, M. A., & Magin, C. M. (2023). Tissue-engineered models of lung cancer premalignancy. BioRxiv, 2023.03.15.532835. https://doi.org/10.1101/2023.03.15.532835
Blomberg, R., Sompel, K., Hauer, C., Smith, A. J., Peña, B., Driscoll, J., Hume, P. S., Merrick, D. T., Tennis, M. A., & Magin, C. M. (2024). Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Advanced Healthcare Materials, 13(4), 2302246. https://doi.org/10.1002/ADHM.202302246
Cheong, S. S., Luis, T. C., Hind, M., & Dean, C. H. (2024). A Novel Method for Floxed Gene Manipulation Using TAT-Cre Recombinase in Ex Vivo Precision-Cut Lung Slices (PCLS). Bio-Protocol, 14(8), e4980. https://doi.org/10.21769/BIOPROTOC.4980
Cramer, N., Nawrot, M. L., Wege, L., Dorda, M., Sommer, C., Danov, O., Wronski, S., Braun, A., Jonigk, D., Fischer, S., Munder, A., & Tümmler, B. (2022). Competitive fitness of Pseudomonas aeruginosa isolates in human and murine precision-cut lung slices. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/FCIMB.2022.992214/FULL
Edström, D., Niroomand, A., Stenlo, M., Uvebrant, K., Bölükbas, D. A., Hirdman, G., Broberg, E., Lim, H. C., Hyllén, S., Lundgren-Åkerlund, E., Pierre, L., Olm, F., & Lindstedt, S. (2023). Integrin α10β1-selected mesenchymal stem cells reduced hypercoagulopathy in a porcine model of acute respiratory distress syndrome. Respiratory Research, 24(1). https://doi.org/10.1186/S12931-023-02459-6
Fercoq, F., Cairns, G. S., Donatis, M. de, Mackey, J. B. G., Floerchinger, A., McFarlane, A., Raffo-Iraolagoitia, X. L., Whyte, D., Arnott, L. W. G., Nixon, C., Wiesheu, R., Kilbey, A., Brown, L., Al-Khalidi, S., Norman, J. C., Roberts, E. W., Blyth, K., Coffelt, S. B., & Carlin, L. M. (2024a). Integrin conformation-dependent neutrophil slowing obstructs the capillaries of the pre-metastatic lung in a model of breast cancer. BioRxiv, 2024.03.19.585724. https://doi.org/10.1101/2024.03.19.585724
Fercoq, F., Cairns, G. S., Donatis, M. de, Mackey, J. B. G., Floerchinger, A., McFarlane, A., Raffo-Iraolagoitia, X. L., Whyte, D., Arnott, L. W. G., Nixon, C., Wiesheu, R., Kilbey, A., Brown, L., Al-Khalidi, S., Norman, J. C., Roberts, E. W., Blyth, K., Coffelt, S. B., & Carlin, L. M. (2024b). Integrin inactivation slows down neutrophils congesting the pre-metastatic lung in a model of breast cancer. BioRxiv, 2024.03.19.585724. https://doi.org/10.1101/2024.03.19.585724
Gonzales-Huerta, L., Williams, T., Aljohani, R., Robertson, B., Evans, C., & Armstrong-James, D. (2024). Precision-cut lung slices in air-liquid interface (PCLS-ALI): A novel ex-vivo model for the study of Pulmonary Aspergillosis. BioRxiv, 2024.11.15.615211. https://doi.org/10.1101/2024.11.15.615211
Gvazava, N., Konings, S. C., Cepeda-Prado, E., Skoryk, V., Umeano, C. H., Dong, J., Silva, I. A. N., Ottosson, D. R., Leigh, N. D., Wagner, D. E., & Klementieva, O. (2023). Label-Free High-Resolution Photothermal Optical Infrared Spectroscopy for Spatiotemporal Chemical Analysis in Fresh, Hydrated Living Tissues and Embryos. Journal of the American Chemical Society, 145. https://doi.org/10.1021/JACS.3C08854
Hargrave, K. E., Worrell, J. C., Pirillo, C., Brennan, E., Garriga, A. M., Gray, J. I., Purnell, T., Roberts, E. W., & MacLeod, M. K. (2023). Lung influenza virus specific memory CD4 T cell location and optimal cytokine production are dependent on interactions with lung antigen-presenting cells. BioRxiv, 2023.09.19.558387. https://doi.org/10.1101/2023.09.19.558387
Hasanaj, E., Beaulieu, D., Wang, C., Hu, Q., Bueno, M., Sembrat, J. C., Pineda, R. H., Melo-Narvaez, M. C., Cardenes, N., Yanwu, Z., Yingze, Z., Lafyatis, R., Morris, A., Mora, A., Rojas, M., Li, D., Rahman, I., Pryhuber, G. S., Lehmann, M., … Königshoff, M. (2024). SenSet, a novel human lung senescence cell gene signature, identifies cell-specific senescence mechanisms. BioRxiv, 2024.12.21.629928. https://doi.org/10.1101/2024.12.21.629928
Hauer, C., Blomberg, R., Sompel, K., Magin, C. M., Ten-Nis, M. A., & Tennis, M. A. (2024). Hydrogel-embedded precision-cut lung slices support ex vivo culture of in vivo-induced premalignant lung lesions. BioRxiv, 2024.04.29.591698. https://doi.org/10.1101/2024.04.29.591698
Jiang, M., Roth, M. G., Chun-On, P., Sullivan, D. I., & Alder, J. K. (2020). Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. American Journal of Respiratory Cell and Molecular Biology, 62(6), 692–698. https://doi.org/10.1165/RCMB.2019-0276TR
Kim, S. Y., Mongey, R., Griffiths, M., Hind, M., & Dean, C. H. (2020). An Ex Vivo Acid Injury and Repair (AIR) Model Using Precision-Cut Lung Slices to Understand Lung Injury and Repair. Current Protocols in Mouse Biology, 10(4). https://doi.org/10.1002/CPMO.85
Melo-Narvaez, M.C., Gölitz, F., Jain, E. et al. (2025). Cold storage of human precision-cut lung slices in TiProtec preserves cellular composition and transcriptional responses and enables on-demand mechanistic studies. Respir Res 26, 57. https://doi.org/10.1186/s12931-025-03132-w
Mondoñedo, J. R., Bartolák-Suki, E., Bou Jawde, S., Nelson, K., Cao, K., Sonnenberg, A., Obrochta, W. P., Imsirovic, J., Ram-Mohan, S., Krishnan, R., & Suki, B. (2020). A High-Throughput System for Cyclic Stretching of Precision-Cut Lung Slices During Acute Cigarette Smoke Extract Exposure. Frontiers in Physiology, 11. https://doi.org/10.3389/FPHYS.2020.00566/FULL
Nowakowska, J., Gvazava, N., Langwi nski, W., Ziarniak, K., Augusto da Silva, I. N., Stegmayr, J., Wagner, D. E., & Szczepankiewicz, A. (2024). Optimizing miRNA transfection for screening in precision cut lung slices. American Journal of Physiology-Lung Cellular and Molecular Physiology. https://doi.org/10.1152/AJPLUNG.00138.2024
Pirillo, C., al Khalidi, S., Sims, A., Devlin, R., Zhao, H., Pinto, R., Jasim, S., Shearer, P. A., Shergold, A. L., Donnelly, H., Bravo-Blas, A., Loney, C., Perona-Wright, G., Hutchinson, E., & Roberts, E. W. (2023). Cotransfer of antigen and contextual information harmonizes peripheral and lymph node conventional dendritic cell activation. Science Immunology, 8(85). https://doi.org/10.1126/sciimmunol.adg8249
Raffo-Iraolagoitia, X. L., McFarlane, A. J., Kruspig, B., Fercoq, F., Secklehner, J., Donatis, M. de, Mackey, J. B. G., Wiesheu, R., Laing, S., Hsieh, Y.-C., Shaw, R., Corbyn, R., Nixon, C., Miller, C., Kirschner, K., Bain, C. C., Murphy, D. J., Coffelt, S. B., & Carlin, L. M. (2023). γδ T cells impair airway macrophage differentiation in lung adenocarcinoma. BioRxiv, 2023.09.14.557344. https://doi.org/10.1101/2023.09.14.557344
Remion, E., Frohberger, S. J., Vallarino-Lhermitte, N., Hoerauf, A., le Quesne, J., dé ric Landmann, F., Hü bner, M. P., Carlin, L. M., & MartinID, C. (2019). IL-4 receptor dependent expansion of lung CD169+ macrophages in microfilaria-driven inflammation. Journals.Plos.Org, 13(8). https://doi.org/10.1371/journal.pntd.0007691
Rodriguez, A. D., Horowitz, L. F., Castro, K., Kenerson, H., Bhattacharjee, N., Gandhe, G., Raman, A., Monnat, R. J., Yeung, R., Rostomily, R. C., & Folch, A. (2020). A microfluidic platform for functional testing of cancer drugs on intact tumor slices. Lab on a Chip, 20(9), 1658–1675. https://doi.org/10.1039/C9LC00811J
Stegmayr, J., Alsafadi, H. N., Langwiński, W., Niroomand, A., Lindstedt, S., Leigh, N. D., & Wagner, D. E. (2021). Isolation of high-yield and -quality RNA from human precision-cut lung slices for RNA-sequencing and computational integration with larger patient cohorts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 320(2), L232–L240. https://doi.org/10.1152/ajplung.00401.2020