Two Electrode Clamp for Oocytes

Two Electrode Clamp for Oocytes

Model npi.TEC-03X

Two-Electrode Voltage Clamp Amplifier for routine recordings from oocytes

  • Save money with this simpler version of the TEC-10CX
  • Easy to use oocyte recording amplifier
  • High clamp speed and long term stability


  • The TEC-03X is based on the standard two electrode approach and is an ideal, easy-to-use system for recording from oocytes
  • Accurate and fast two-electrode voltage and current clamp (V/C) amplifier with PI-controller for studying large membrane currents
  • Differential potential registration and high-voltage current source output, automated electrode resistance test mode which can be used even with the electrodes impaled in an oocyte
  • Digital DISPLAYS for current, voltage and electrode resistance
  • Four-pole BESSEL filter for current
  • No virtual ground needed for recording membrane currents
  • OSCILLATION SHUT-OFF unit prevents cells from damage
  • Standard current range is ±150 µA into 1 MOhm. Current headstages with selectable current ranges (x0.1, x1, x2, x5 or x0.1, x0.2, x0.5, x1) are also available
  • Easy operation with all major data acquisition systems, remote selection of MODE of OPERATION (CC, VC), telegraphing (monitoring) outputs for current sensitivity and filter


MODES OF OPERATION RPel: Potential Electrode Resistance Test;
CC: Current Clamp Mode;
VC: Voltage Clamp Mode;
RCel: Current Electrode Resistance Test;
BR: Bridge Mode (TEC-05X);
DHC Mode (TEC-05X, option);
Potential headstage:
Operating voltage ±15 V;
Size (approx.): 70x26x26mm, holding bar diameter 8 mm, length 150 mm;
Input resistance: >1013 Ω;
Differential input (for supression of bath potentials): cmr >80 dB.Current headstage (15 V, TEC-05X)):
Operating voltage: ±15 V;
Size (approx.): same as potential headstage,
Input resistance: >1012 Ω (internally trimmable).Current headstage (150 V):
Operating voltage: ±150 V (standard);
Size (approx.): 100x50x30 mm, grounded enclosure,
holding bar diameter 8 mm, length 10 cm (isolated from ground, standard system only);
Input resistance: >1012 Ω (internally trimmable);
Power dissipation: 6 W (standard)
FEATURES Oscillation Shut-off
Electrode Resistance Test
Proportional Integrator
Series Resistance Compensation
Transient Compensation (TEC-10CX)
Uncompensated output signal: sensitivity 0.1 V/µA or 0.1 nA/V (TEC-05X), voltage range ±15 V;
Compensated/filtered output: sensitivity: 0.1 V…10 V/µA (V/nA for TEC-05X)
Potential electrode: two outputs, sensitivity x10 mV only (TEC-03X) or x10 mV and x40 mV (TEC-05X, TEC-10CX), voltage range ±15V;
Current electrode: sensitivity x10 mV, voltage range ±15 V;
INPUTS CURRENT CLAMP (standard headstage):
Inputs: 1 µA/V, 0.1 µA/V with ON/OFF switches (TEC-10CX), 1 µA/V (TEC-03X), 1 nA/V, 0.1 nA/V with ON/OFF switches (TEC-05X);
input resistance >100 kΩ;
Inputs: :10 mV and :40 mV (TEC-05X, TEC-10CX) with ON/OFF switches, input resistance >100 kΩ;
CONTROLS MODE selection: rotary switches (TEC-03X, TEC-05X), or pushbuttons (TEC-10CX) , LED indicators;
remote selection by TTL inputs, software assessable (optional).
Current Electrode Parameter Controls:
Offset compensation: ten-turn control, ±1200 mV;
Capacity compensation (optional, TEC-05X): range 0 – 30 pF, ten-turn potentiometer.
Potential Electrode Parameter Controls:
Offset compensation: ±200mV, ten-turn control;
Capacity compensation: range 0 – 30 pF, ten-turn control.
Oscillation Shut off: disabled / off / reset switch, threshold set with linear control (0- 1200 mV).
Current Clamp: HOLD: X.XX µA (TEC-03X, TEC-10CX), X.XX nA, ten-turn digital control with -/0/+ switch, maximum 10 µA (TEC-03X, TEC-10CX) or 10 nA (TEC-05X);
BRIDGE balance (optional, TEC-05X systems): max. 10 MΩ or max. 100 MΩ (switch selected) with ten-turn digital control.
INTEGRATOR TIME CONSTANT: 200 µs – 2 ms, ten-turn control (TEC-03X) or control with ON/OFF switch (TEC-05X, TEC-10CX) ;
Voltage Clamp: HOLD: XXX mV, ten-turn digital control with +/0/- switch, maximum 1000 mV;
RISE TIME LIMIT: 0 – 0.2 ms;
GAIN: 10 µA/V – 10000 µA/V, ten-turn linear control;
INTEGRATOR TIME CONSTANT: 200 µs – 2 ms, ten-turn control (TEC-03X) or control with ON/OFF switch (TEC-05X, TEC-10CX) ;
OUTPUT CURRENT LIMIT5 (TEC-10CX): 0 – 100%, linear control;
OUTPUT FILTERS Current output: lowpass  filters with 16 corner frequencies (20 Hz – 20 kHz)
AUDIO MONITOR Pitch correlated with potential signal.
DISPLAYS potential display: XXX mV.
Electrode resistance display XXX MΩ.
current display: X.XX µA
VC error (TEC-10X)
POWER REQUIREMENTS 115 V/230 V AC, 60 W (1.25 A/0.63 A fuse, SLOW).
DIMENSIONS 19″ rackmount cabinet, 19″ (483 mm) wide, 14″ (355 mm) deep, 5.25″(132.5 mm) high
weight: approx. 8 kg.


Vogel, F. D., Krenn, M., Westphal, D. S., Graf, E., Wagner, M., Leiz, S., Koniuszewski, F., Augé-Stock, M., Kramer, G., Scholze, P., & Ernst, M. (2022). A de novo missense variant in GABRA4 alters receptor function in an epileptic and neurodevelopmental phenotype. Epilepsia, 63(4), e35–e41.

Bampali, K., Koniuszewski, F., Silva, L. L., Rehman, S., Vogel, F. D., Seidel, T., Scholze, P., Zirpel, F., Garon, A., Langer, T., Willeit, M., & Ernst, M. (2022). Tricyclic antipsychotics and antidepressants can inhibit α5-containing GABAA receptors by two distinct mechanisms. British Journal of Pharmacology, 179(14), 3675–3692.

Bampali, K., Koniuszewski, F., Vogel, F. D., Fabjan, J., Andronis, C., Lekka, E., Virvillis, V., Seidel, T., Delaunois, A., Royer, L., Rolf, M. G., Giuliano, C., Traebert, M., Roussignol, G., Fric-Bordat, M., Mazelin-Winum, L., Bryant, S. D., Langer, T., & Ernst, M. (2023). GABAA receptor-mediated seizure liabilities: a mixed-methods screening approach. Cell Biology and Toxicology.

Syafni, N., Faleschini, M. T., Garifulina, A., Danton, O., Gupta, M. P., Hering, S., & Hamburger, M. (2022). Clerodane Diterpenes from Casearia corymbosa as Allosteric GABAAReceptor Modulators. In Journal of Natural Products (Vol. 85, Issue 5, pp. 1201–1210). American Chemical Society.

Abrahamyan, A., Eldstrom, J., Sahakyan, H., Karagulyan, N., Mkrtchyan, L., Karapetyan, T., Sargsyan, E., Kneussel, M., Nazaryan, K., Schwarz, J. R., Fedida, D., & Vardanyan, V. (2023). Mechanism of external K+ sensitivity of KCNQ1 channels. The Journal of General Physiology, 155(5).

Heider, J., Kilian, J., Garifulina, A., Hering, S., Langer, T., & Seidel, T. (2023). Apo2ph4: A Versatile Workflow for the Generation of Receptor-based Pharmacophore Models for Virtual Screening. Journal of Chemical Information and Modeling, 63(1), 101–110.


Product Manuals

Copyright © 2024 Campden Instruments. All Rights Reserved.

Product Search

Use the provided form to search for products on this website.