ELC amplifiers are multi technique systems where researchers can combine traditional patch and microelectrode recording with electrical stimulation, dye application or single cell transfection. All ELC amplifiers enable an investigator to identify a single cell by its characteristic spike train and then electroporate or stimulate this cell in situ. Using the loosepatch clamp technique for recording and stimulation in slice or in in vivo preparations, allow investigations under more natural, i.e. non-invasive conditions. Experiments can be executed with minimal damage to individual cells including subcellular structures such as dendrites and axons. Since no gigaseal is required for these types of experiments, the same pipette can even be used for several cells. The ELC incorporates a unique headstage with a resistive-feedback circuit capable of functioning as follows:
ELC amplifiers come in 2 versions:
Therefore, ELC-03XS amplifiers offer an unprecedented combination of capabilities with only one headstage compared to other commercial amplifiers with a more limited functional design. Researchers will find this amplifier an excellent and very cost effective solution for carrying out multiple recording techniques while using several stimulation protocols.
Headstage
Input voltage range: |
±12 V |
Operating voltage: |
±15 V |
Enclosure: |
Size: 23 x 70 x 26 mm, grounded |
Dovetail: |
Size: 70 mm x 17 mm x 3 mm |
Electrode connector: |
BNC with driven shield |
REF connector: |
SMB connector |
Ground connector: |
2.4 mm connector |
Input resistance (CC): |
>1013 Ω (internally adjustable) |
Current range: |
±100 nA max. (100 MΩ feedback, x1 range) |
Electrode parameter controls
OFFSET: |
range ±100 mV, ten-turn control |
PIPETTE HOLD POTENTIAL (in VC): |
range ±100 mV, ten-turn control |
CAPACITY COMPENSATION: |
range 0 – 30 pF, ten-turn control |
BIAS: |
range ±100 pA, ten-turn control |
BRIDGE BALANCE: |
0-100 MΩ, adjustable with ten-turn control |
Electrode resistance test
Sensitivity 1 mV / MΩ |
application of square current pulses ±1 nA |
Display: |
3 ½ digit, XXX MΩ, activated by key switch |
Bandwidth and speed response (CC mode, optimal capacity compensation)
Full power bandwidth (REL = 0 MΩ): |
>30 kHz |
rise time (10% – 90%) |
<10 µs (REL = 100 MΩ) |
Outputs
Output impedance: |
50 Ω |
Max. voltage: |
±12 V |
Current output: |
BNC connector, sensitivity 0.1…10 V/nA, |
Current output sensitivity: |
Rotary switch, 0.1, 0.2, 0.5, 1, 2, 5, 10 V/nA |
Current display: |
3 ½ digits, XX.XX nA, resolution 10 pA |
|
|
Current LP filter: |
4-pole BESSEL filter (other options available) |
attenuation: |
-24 dB/octave |
corner frequencies (Hz): |
20, 50, 100, 200, 300, 500, 700, 1k, 1,3k, 2k, 3k, 5k, 8k, 10k, 13k, 20k |
|
|
Potential output x1: |
BNC connector, sensitivity 1 V/V |
Potential output: |
BNC connector, sensitivity 10…1k V/V |
Potential output gain: |
Rotary switch, 10, 20, 50, 100, 200, 500, 1k |
Potential output resolution in AC: |
50 µV |
|
|
Potential LP filter: |
4-pole BESSEL filter (other options available) |
attenuation: |
-24 dB/octave |
corner frequencies (Hz): |
20, 50, 100, 200, 300, 500, 700, 1k, 1,3k, 2k, 3k, 5k, 8k, 10k, 13k, 20k |
|
|
Potential HP filter: |
1-pole filter, (other options available) |
attenuation: |
-6 dB/octave |
corner frequencies (Hz): |
DC, 0.1, 0.3, 0.5, 1, 3, 5, 10, 30, 50, 100, 300, 500, 800, 1k, 3k |
|
|
Telegraph potential LP filter |
-8…+7 V, 1V/step |
Telegraph potential HP filter |
-8…+7 V, 1V/step |
Telegraph current filter |
-8…+7 V, 1V/step |
Telegraph potential output sensitivity |
+1…+7 V, 1V/step |
Telegraph current output sensitivity |
+1…+7 V, 1V/step |
Digital displays:
Display mV/MΩ |
3 ½ digits, XXXX mV or XXX MΩ |
Display current |
3 ½ digits, XX.XX nA |
Inputs
Input impedance analog |
100 kΩ |
Input range |
±12 V |
Input impedance digital (TTL) |
10 kΩ |
Input range TTL |
0-5 V |
Current stimulus input CC |
via BNC connectors, sensitivity 1 nA / V |
Current stimulus input CCx10 |
via BNC connectors, sensitivity 10 nA / V |
Step gate input |
via BNC connector (TTL) |
Gated stimulus CC |
with ten-turn control of holding current |
Gated stimulus CCx10 |
with ten-turn control of holding current |
Polarity |
selectable with toggle switch |
|
|
Voltage command input VC |
via BNC connectors, sensitivity: ÷10 mV |
Voltage command input VCx10 |
via BNC connectors, sensitivity: ÷1 mV |
Step gate input |
via BNC connector (TTL) |
Gated stimulus VC |
with ten-turn control of holding potential |
Gated stimulus VCx10 |
with ten-turn control of holding potential |
Polarity |
selectable with toggle switch |
Physical specifications
Dimensions: |
19” rackmount cabinet |
Power requirements: |
115/230 V AC, 60/50 Hz, fuse 0.4/0.2 A, slow, 25 W |
Weight: |
5.0 kg |
Sabate-Soler, S., Nickels, S. L., Saraiva, C., Berger, E., Dubonyte, U., Barmpa, K., Lan, Y. J., Kouno, T., Jarazo, J., Robertson, G., Sharif, J., Koseki, H., Thome, C., Shin, J. W., Cowley, S. A., & Schwamborn, J. C. (2022). Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. GLIA, 70(7), 1267–1288. https://doi.org/10.1002/glia.24167
Zhou, J., Van der Heijden, M. E., Salazar Leon, L. E., Lin, T., Miterko, L. N., Kizek, D. J., Perez, R. M., Pavešković, M., Brown, A. M., & Sillitoe, R. V. (2022). Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells, 11(23). https://doi.org/10.3390/cells11233889
van der Heijden, M. E., Brown, A. M., & Sillitoe, R. V. (2022). Silencing the Output of Cerebellar Neurons Using Cell Type-Specific Genetic Deletion of Vesicular GABA and Glutamate Transporters. In Neuromethods (Vol. 177, pp. 47–67). https://doi.org/10.1007/978-1-0716-2026-7_3
Breuer, T. M., & Krieger, P. (2022). Sensory deprivation leads to subpopulation-specific changes in layer 6 corticothalamic cells. European Journal of Neuroscience, 55(2), 566–588. https://doi.org/10.1111/ejn.15572
Lado, W. E., Xu, X., & Hablitz, J. J. (2022). Modulation of epileptiform activity by three subgroups of GABAergic interneurons in mouse somatosensory cortex. Epilepsy Research, 183. https://doi.org/10.1016/j.eplepsyres.2022.106937
Ding, L., Balsamo, G., Chen, H., Blanco-Hernandez, E., Zouridis, I. S., Naumann, R., Preston-Ferrer, P., & Burgalossi, A. (2022). Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. ELife, 11, 71720. https://doi.org/10.7554/eLife.71720